PHYSICAL REVIEW E 66, 051106 (2002
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A recent mean-field analysis of a model consistindNafionlinear phase oscillators—under the joint influ-
ence ofglobal periodiccoupling with strengttK, and oflocal multiplicativeand additive noises—has shown
a nonequilibrium phase transition towards a broken-symmetry phase exhibiting noise-induced transport, or
“ratchet” behavior. In a previous paper we focused on the relationship between the character(roetre
veIocity(X) vs load forceF) hysteresis loop, the number of “homogeneous” mean-field solutions, and the
shape of the stationary mean-field probability distribution functi®dbF). Here we assume that the multipli-
cative noises of the model af@rnstein-Uhlenbeckvith common strengti@Q and self-correlation time. By
resorting to an effective Markovian approximation, we study#liependence of the phase boundary, and that
of the line signaling the transition from the “interaction-driven regime” to the “noise-driven regime.” We also
study—for selected representative points of Kwevs Q phase diagram—the dependence of the transport
properties induced by coupling and colored multiplicative ndiseluding the efficiency of the mechanical
rectification procegsand that of the above-mentioned PDF.
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[. INTRODUCTION noises are usually modeled as white. This impéasluding
from the outsetime scales that are much shorter than the
Evidence accumulated mainly over the last 3 decades hdsleterministic” (i.e., coarse-grainganes of the system they
radically changed our traditional concept of noise as a nuicouple to, andassumingat the same time that the typical
sance. A vast collection of phenomena that seem to be georrelation time of the fluctuations is still well below this
neric in far-from-equilibrium situations teaches us that fluc-cutoff time scale. We should keep in mind, however, that a
tuations can also play eonstructiverole. A partial list of  multiplicative noise is nonetheless but an effective model for
such phenomena includes noise-induced unimodal-bimoddhe action of an external source that exchanges energy with
transitions in some zero-dimensional modg@lsscribing ei- the system in a far-from-equilibrium regime, and has its own
ther concentrated systems or uniform figldig], shifts in  characteristic time scalésot always negligible with respect
critical points[2], stochastic resonance in zero-dimensionalto those of the systemin most cases, the above assumption
and extended systerfi3,4], noise-delayed decay of unstable is too simplistic, since the self-correlation timeof fluctua-
stateq5], noise-induced spatial patterf&, etc. A Langevin  tions coupled multiplicatively to the system—although short
description of the systems exhibiting such phenomena recompared with the deterministic time scales—is measurable
veals common aspects among most of them: on one hand, tlad non-negligiblé¢1,11-14. Thus motivatedand aware of
intrinsic dynamics is nonlinear; on the other, fluctuationsthe nontrivial effects produced by colored noise in zero-
usually actmultiplicativelyon the system, i.e., their represen- dimensional models, such as the reentrance as a functien of
tative variables appear in the corresponding Langevin equdeund in Ref.[15]) in Refs.[16] we have explored—in the
tions multiplying (usually nonlinear functions of the sys- mean-field approximatioiMFA)—the consequences of let-
tem’s variables. In this paper we shall focus on two othetting the multiplicative noises in the model of Refg]) have
phenomena in the same class as the aforementioned collezfinite 7.
tion: noise-inducedphasetransitions in extended systems In Ref.[17] a ratchetlike transport mechanism was shown
[6,7], and noise-drivertransport (“Brownian motors” or  to arise—through a symmetry-breaking nonequilibrium
“ratchets” [8], nicely discussed by Feynm&f] and inspir-  phase transition—in a system of nonlinear phase oscillators
ing the present development of a “nanomechanics” that radithat interact througlperiodic forces, while being submitted
cally departs from the principles upon which macroscopicto multiplicativewhite noisegas well as additive or thermal
machines are built10]). ones and deterministic external forces. The latter, as well as
For the sake of mathematical simplicity, multiplicative the functions to which the multiplicative noises couple, can
be derived fromsymmetrigoeriodic potentials. The nonequi-
librium phase transition—jointly induced by the coupling

*Electronic address: smangio@mdp.edu.ar and the multiplicative noises—igentrantas the latter be-
"Electronic address: deza@mdp.edu.ar come too strong. Among the most prominent novel features
*Electronic address: wio@cab.cnea.gov.ar found by the authors in Ref17] through a strong-coupling
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analysis, we may citeegative mobilityjust outside the left The terms inside the brackets are global and static: a poten-
phase boundary, amrmhomalous hysteresiaside it. In Ref.  tial V(x) and an eventual “load forceF, which is just a tool
[18] we performed a mean-field analysis of the whole or-for the analysis of the noise-induced ratchet effect. The in-
dered phase and found a transition in the character of thieresting features in E@2) are thefluctuatinglocal terms, in
hysteresis cycle, which is in turn intimately associated to thavhich Gaussian noises;(t) of a nonthermal origin couple
number of a certain kind of solutions to the mean-field equamultiplicatively (with intensity Q) to the phasesX;(t),
tions, and with the shape of the stationary probability distri-through a global functiowW(x). Both V(x) and W(x) are
bution. periodic functions (with period L), and moreover they are
As in Refs.[16], in this paper we study the effects of a symmetric [V(—Xx)=V(x),W(—x)=W(x)], which means
nonzero self-correlation time (color) of the multiplicative  that there is nduilt-in ratchet effect.
noises, using a mean-field scheme. Our main finding$lare At variance with our former work18], we now assume
the transition becomegentrantas a function oK, (for 7 that thes;(t) are Ornstein-Uhlenbeck:
#0, ordering is possible onlpelow certain critical cou-
pling); (2) for large enoughr, the response of the particle

current(X) to the load forceF becomes very complex3)
the efficiency ¢ of the mechanical rectification process )
shows a strong dependence on the parameters of the model, Following Ref.[17] we adoptl =27 and
and can be maximized for certain combinations of them. .

Moreover, in order that the coupled ratchets make useful ~V(X)=W(X)=—cosx—AcosX with A=0.15, (4)
work, the self-correlation time- must overcome a certain
threshold value.

In Sec. Il we sketch the main features of the model and of, . . . .
its mean-field analysisdiscussed extensively in Rgf18]) A_‘S discussed |_n Ref{18], vyhepA>0 'h Eq. (4), the direc-
and the way it has to be modified to account for finitein ~ tion of the particle currentX) is oppositeto that of Symme-
Sec. Il we discuss our numerical mean-field results withl’Y Preaking in the stationary probability distributiét?(x)

regard to the phase diagram, stationary probability distribu(S€€ Sec. Il C for the definition of these magnitudeshich
tion function (PDP, hysteretic behavior, and the energetics/®2dS in turn tanegative zero-bias conductanaed anoma-
of the process. Finally, in Sec. IV we give our conclusions. /0US hysteresishith the choice in Eq(S), the second term in
Eqg. (1) can be cast a¥y[C;(t)sinX;—S(t)cosX;], with
Ci(t)=N"13;cosx;(t) and S;(t)=N""1Z;sinx(t).
IIl. THE MODEL AND ITS MEAN-FIELD ANALYSIS Besidesr, the important parameters in the model just set
A. The model up areK, (governing mostly the “drift” terms in this set of
generalized Langevin equationgand Q (governing mostly
the “diffusion” ones). For A—0, this model can be visual-
ized as a set of overdamped pendulufosly their phases
matter, not their locationsinteracting with one another
through a force proportional to the sine of their phase differ-
U 1 ence(this force is always attractive in the reduced interval

Xi=| ~ 0% N 2 KOG [ +V2T g, () XY=,

1
(mi(1)=0, (m(t)n;(t'))= ;5ijeXp(—|t—t'|/T)- ()

K(x)=Kpsinx  with Ky>0. 5)

As in Ref.[18], we consider the following system of
globally coupled stochastic differential equatiairsterpreted
in the Stratonovich senge for the phases X;(t)
e[—L/2L/2] [17]:

) B. The approximations
where we assumBl to be very largelexcept for numerical

simulations, its particular value is unimportanThe term 1. Mean-field approximation
outside the brackets is nothing but a Langevin force, model- |n Ref.[18]—the Gaussian stochastic variablggt) and
ing the effect of thermal fluctuationd: represents the tem-  .(t') being independenfor t’#t—one could simply add
perature of the environmertas in Refs.[17,18 we shall  (for eacht) &(t) to #;(t), and regard they;(t) aseffective
adopt T=2 throughout and the ;(t) are local, additive, multiplicative Gaussian noises. Equatiéh) was then ap-
Gaussian white noises with zero mean and varianc@roximated(for N—) in the manner of Curie-Weiss, re-
1[(&(1))=0,(&(1) (1)) = g 8(t—t")]. placing C;(t) and S(t) by new parameterE,, and S,,,

The interesting features in E¢l) come from the terms respectively—determined as usual by self-consistency—so
inside the brackets. In terms of the phaselike real Variableaecoup”ng the System of stochastic differential equations
X,y that run over the rangé—L/2,L/2] of the stochastic (SDE). We thus obtained within this MFA Klarkovian SDE

processeX;(t),X;(t), they are the local “pulsating” poten- for the single stochastic proceX§t) [19]:
tials U;(x,t) and the interaction-force functiolK(x—y)

= —K(y—x) between phase oscillators. The latter ipeai- X=1(X;Cm,Sm) +9(X) 5(t), (6)
odic function of x—y, with periodL; the former have the
form where g(x)=2[T+Q(W')?] and f(x;Cp,Sym)=—V'(X)
+F—Ko(Cpsinx—S,cosx). The associated Fokker-Planck
Ui(x,t)=[V(x)—Fx]+W(x)\/ﬁ 7i(t). (2 equation(FPE for the (one-timg PDF P(x,t;C,,S,) was
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P =a{=[f()+29(x) 9’ () IP}+ 39, g*(X)P]. o
7

This can always be cast as a continuity equatigP+ d,J
=0, so that in the stationary cas&P=0 it is
J(x,t;C,Sy) =const=J(Cr,, Sy -

2. Unified colored-noise approximation

In the present case, neither can we lugft) and 7;(t)

together nor do we retrieve in the MFA a Markovian SDE. ;4 MC

The equivalent of Eq(6) is now the following system:
X=f(X;Crm,Sm) +G(X) 7(t) + V2T &(1),

= —n(t)+{(1), ®

which yields a Markovian process in an extendet] )
space, but not i space. In Eq(8) f(x;C,,,Sy) is the same
as before,G(x)=+2QW'(x), and {(t) is another white
noise:
(L(1)=0,

(L ))=at—t"), (LHER))=0.

PHYSICAL REVIEW BE6, 051106 (2002

where

| o [*yy fYiCm S )
$(X:Cry, Sy, )= zfodyg%y;cm,smm)’

X+L

| - exd ¢(Y;Cm,Sm,7)]
H(X.Cm!Sm'T)_JX y g(y;cmism'T) ’

m:Sm,7) is a normalization constant. Although
f(X;Cm»Sm.7), 9(X;C,Sm,7), and PS(x;C,,S,,7) are
periodic by constructiong(x;C,,,S,,,7) increases in each
cycle by a constant amoun{18]. Note also that
PSY(x;Cp,,Sm,7) =0 requiregy(x;C,,,Sy,7)>0, which is a
further test for the adequacy of the UCNA.

In the appendix of Refl18] it is shown that

1— e#LiCm Sn )

e 2 (A I

hence the sign o8 is that of 1—e?") and—on the other
hand—the “holonomy” conditiore?(X)=1 impliesJ=0 and

For non-Markovian processes, a FPE can at most resufjx.c_ s 7)=const=H(C,,,S,,7). Equation(10) is a

from some(nonsystematijcapproximation, e.g., the trunca-

self-consistency relation since batfiand ¢(L) keep infor-

tion of a shorts expansion. Fortunately, under certain con-mation on the shape d#s(x) throughC,, andS,,. A non-

ditions aconsistentMarkovian approximatioricalled “uni-
fied colored-noise approximation”(UCNA)] can be
performed[20]. A long calculation involving path integrals
[21] shows that in th&)>T regime one can still use E()
[and hence Eq(7), as if X(t) were a Markovian procegs
with new functions that keep information an

f(X;Cm,Sm, 7)=F(X;Crn . Sn)/N(X;Cry s Sy 7)
and
9(X%;Cm,Sm, 1) =9(X)/h(X;Crn, S, 7),
where
h(X;Cm,Sm,7)=1=79(X)[F(X;Cpn,Sn)/9(x)]’

(the prime stands for the derivative with respeckjo

The UCNA becomes exact not only as-0, but also for
7—oo [20]. For finite 7, the behavior off (x;C,,,S,,,7) and
9(X;C,Sm,7) depends or f(x;C,,,Sn)/a(x)]"; in some

zeroJ is always associated with a symmetry breakdown in
PS{(x) [namely, PS'(—x)# PSY(x)]. This may be eithein-
ducedby a nonzeroF or spontaneougour main concern
here.

2. The particle current

The appearance of a ratchet effect amounts to the exis-

tence of a nonvanishing drift terfiX) in the stationary state,
in the absence of any forcing=&0). The cause of this
spontaneous particle curreftihe pendulums become rotators
in an average senpgds the noise-induced asymmetry in
PS(x) [17].

As it is shown in the appendix of Ref18],

) L2
<x)=f dx P(X;Cpn, S, T F(X;C S 7)
—L/2

+39(X%Cn.Sm. 79" (%,Cpm.Sm. 7)1, (12

casedqthough not in the present workhey can even become which after some calculation yields
singular, and one must resort to interpolation methods to re-

trieve meaningful resultgl6,22.

C. Relevant magnitudes
1. The stationary PDF

The normalized stationary solution of E) with peri-
odic boundary conditiongnd current density(C,,Sy,7)
#0 is
e~ #0CmSn D H(x;Cpp, Sy, 7)
MCn.Sm.7) 9(X,Cm S, 7)

PSt(X;CmISmiT)z ’ (9)

: 1—e%M)
<x>:L[T]=LJ, (12)

hence(X} has the sign of and, being a measurable quantity,
will be regarded as the order parameter in what follows.

3. Energetics of the process

Following Ref.[23], we shall analyze the energetics of the
process in terms of the followin@pecific, i.e., per particje
magnitudes:
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(@ Ein:o'( G(X) 7(t))=(2Q/7)((W")?). Power deliv- the Newton-Raphson st_)lution of Egd.3) and_(14), given
ered to the system by the external fluctuations, as obtainede fact that some solutions may suddenly disappear
from Egs.(8).

(b) Equ= — (X)F. Power delivered by the system against
the forceF. Equation(14) proves impractical for the task of finding

_ _ the curve that separates the ordered phase from the disor-
From these we may calculate the efficiency E,,;/E;, of  dered one, since on that curg, is still zero. For that goal
the mechanical rectifying process afgince the internal en- (exclusively, we solve, instead of Eq$13) and (14), the
ergy of the system is constant in the stationary regithe  following system:

dissipated poweq=E;,—E,,, as well as the entropy pro-

. L/2
ductionS=q/T per particle. f dxcosxP%Y(x;C,,0,7)=C,, (15
—L/2

2. The phase boundary

D. Relevant equations

L/2 9
dxsinx——P5(x;C,,,S, _o=1. (16
quz S, (X;Cm S, 7')|sm 0 (16)

1. The self-consistency equations

As stated before, the values &, and C,, arise from

requiring self-consistency, which amounts to solvitfgr . NUMERICAL MEAN-FIELD RESULTS
given Q, Ky, F, and 7) the system of nonlinear integral _
equations A. Ky vs Q phase diagram
1. Summary of ther=0 results
Fem(Cm i Smi7)=Ch, (13 . .. L
In Ref. [18]—besides obtaining within the MFA a phase
Fer(Cm:Sm:7)=Sm, (14)  boundary that fully coincided with thahumerica) in Fig.
1(b) of Ref. [17]—we have shown that a transition takes
where place inside the ordered phase, in the behavior of the system.
L2 (1) For Ky/Q large enough“interaction-driven regime”
Fem(CmsSm,7)=(cosx)= dx cosxP®(x;C,Sm,7), or IDR) the system typically exhibits aanomalougnamely,

—L/2 . . N . L
clockwise@ hysteresis cycle in itéX) vs F characteristic, and

L unimodalstationary PDF.
Fsm(Cm,Sm,T)E<SinX>:f dxsinxPsY(x;Cy,,Sm, 7). (2) For lower values oK,/Q (“noise-driven regime” or
L2 NDR) the (X) vs F characteristic showsormal (counter-
clockwise hysteresis and the PDF becomiesnodal re-
maining so ax) increasedor K, decreasesfurther. As the
disordered region is reentered the PDF becomes symmetric
Cn(Q.Ko,F,7)and  Sn(Q.Ko,F.7) again, the peak at being then higher than that at(6ee Fig.

for each set of the parameters that define the state of the N Ref.[18] and ther=0 PDF in Fig. 3 of this paper

system. . A good estimation of the boundary between the IDR and the
ForF=0 th(_ere are always one or more solutions to EqSypR was provided in Ref{18] by the line separating two

(13 and(14) with S,=0, and one of them is the stable one o corguithin the ordered regiomith regard to the “homo-

in the “disordered” phasdin this casePS!(x) is an even geneous” 6,=0) solutions to the MFA self-consistency

function of?<]. So the problem (_)f self-consistenf:y reduces toequations: below itNDR), there isa singlesuch solution to

the numerical search of solutions to HA43), with Sy=0  Eqs.(13) and(14); above it(IDR), there are three, five, efc.

(what in Ref.[18] we have called *homogeneous solu- Thjg jine presented a cusp whose meaning we investigated in

tions”). Since cox in this equation is an even function ®f  Ret [18] for 7=0, finding a physical featuré.e., one not

in order to determine the stability of these solutions it suf-griputable to MFA artifacts whereas the character of the

fices to use the Curie-Wei¢sne-parametercriterion, i.e., to hysteresis loop changed from anomalous to normal in going

These equations give

check whether the slope &, at Sy=0 is <1 or >1. from the IDR to the NDR to the right of this cusp, it re-
As argued in Ref[17], for N— a noise-induced non- mained anomalous while crossing this line on the left side.
equilibrium transition takes placgenerically towards an Since the transition from anomalous to normal hysteresis

“ordered” phase whereP*'(—x)#P®(x). In the present iy going from the IDR to the NDR is typically preceded by
scheme this asymmetry should be evidenced by the fact thgte disappearance ghirs of solutions withS,,=0, the line

the solution withS,,=0 becomes unstable in favor of other i, the phase diagram below whiehsingle“homogeneous”

two solutions such thaP3'(x) =P3(—x), characterized by solution exists(dashed line in Fig. 1 of Ref18] and solid
nonzerovalues=|S;| (this fact confers als&, the rank of  thin line in Fig. 1 of this paperprovides an estimatioof the

an order parameter, but we shall 36 to that engl. None-  place at which the former transition occurs. Of course both
theless, even in the ordered phase the “homogeneous” solyphenomena are different, and so the disappearance of a pair
tions are of interedfthis time as a secure starting guess forof solutions withS,,=0 does not implyan anomalous-to-
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FIG. 1. Ky vs Q phase diagram of the model fér=0. Solid
lines, 7=0.0; dashed lines;=0.1; dotted linesy=0.3. For each
value of 7 the ordered region lies above and to the right of the

corresponding thick line. Above the thin lines there may exist sev-

eral solutions wheis,,# 0, whereas below them there may exist at
most one. PointA=(10.0,10.2) andB=(16.0,6.6) indicate two
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with S,>0, whose moduli, fol-=0, are equal. A strong
enoughF washes out the potential wells eliminating the pos-
sibility of stationary solutions and inducing a limit cycle
(that, as indicated in Sec. Il B 1, has been actually found and
will be discussed in detail elsewhegre

However, one of the stationary solutions disappears be-
fore the other. Such a solution is the one with the s&n
opposite to the sign of (that is, if F>0, the one withS,,
<0 is the first to disappearLooking at thev,, vs F dia-
gram, for a critical value of, it is thev,,>0 branch that
first disappears, while the other survives until another, larger,
critical value ofF is reached. This produces the anomalous
hysteretic behavior.

The relevant question is, clearly, why the branch with the
sign of S,, opposite to the one df disappears first? In order
to understand this, we can resort to the coupled pendulums
picture (caseA=0). Each value o8, corresponds to a po-
sition of the pendulum at each side of the symmetry axis.

different regimes at which the transport properties and the shape ohen a load force is ap_pli(_—:d ina .given direction, it _fedUCeS
PS{(x) have been investigated. The triangles are explained in Se@ne of those angles while increasing the other. For instance,

I C.

normal transition(an example of this assertion is that there

if F>0, the angle withS,,<0 is reduced and that witB,,
>0 is increased. As the value &f, controls the asymmetry
of the effective potentialfor larger|S,,| it becomes more

was no change in the character of the hysteresis loop at tfRSymmetric, and fo6,=0 it becomes fully symmetrjc in-

left of the cusp.

It must be emphasized th&X) (denoted asV, in the
figures shows hysteretic behavior as a functionFoévery-
where inside the ordered phas&t]. In the IDR, theheight

of the (anomalou} hysteresis loop increases continuously at

the phase boundary(X) acts as an order parameter in a
second-order phase transitjoinstead, the disappearance of
the (norma) hysteresis loop in the NDR proceeds by shrink-
ing its width at a more or less finite heiglialthough the
transition at the reentrance is sécondorder, it is so steep
that it resembles a first order one

2. The PDF and the hysteresis’ character

creasingF we not only wash out the potential wells but in
addition reduce the asymmetry of the solution $<0 and
enhance the one wits,,>0. This is the reason why, at a
smaller critical value, the solution witl,,<0 disappears
first. WhenF<0 we have the specular situation.

Normal hysteretic behaviokVhen the noise intensi@ is
very large, it can completely hide the effect of the coupling,
and the effective potential becomes symmetric again, with
only one stable solutiokwith v,=0 if F=0). For smaller
values ofQ, but still large enough to dominate the coupling,
the solutions show values &, that varies only sightly with
F. This can again be understood resorting to the coupled
pendulums example. We have shoji8] that in the NDR,
for each solution §,,>0 andS,,<0), the PDF presents two

Here we want to discuss the relation between the PDF an@eaks, one near zero and the other neaForF>0, the two
the normal or anomalous character of the hysteresis loop. Tangles(or peaks corresponding t&,,<<0 approach the sym-

reach this goal, we recall that in Rdfl8] we have intro-
duced the idea of aaffective potentiathat includes several

metry axis(one —0 and the other— ), while the corre-
sponding ones foB,,>0 depart from the axis. Due to the

contributions. First, a term corresponding to the symmetrisymmetry of their positions, the mean values corresponding

potential V(x)=cosx+2Acos %, affecting all oscillators.

to S;,<0 and S;,>0 will remain approximately constant.

Second, a term that corresponds to the mutual interactiomhis means that, on one hand, whergrows, the peaks of

between the oscillator&q(C,,sinx—S;,cosx). And finally,
third and fourth terms arising from the load forEe and a

the PDF forS,<0 separate, while those corresponding to
S>>0 tend to coalesce. On the other hand, comparing the

symmetric one arising from the Stratonovich prescription toform of the effective potential for both solution§{<0 and

treat the noisy ternjyielding a term given byQ times
S(x)S' (x)/2], respectively.

Anomalous hysteretic behavidrhe anomalous hysteresis
loop arises in the IDR, the region where the interactithe
second term indicated abgvereaks the symmetry of the

S,,>0) for a value ofF near the critical ond-. (but, and

only for comparison purposeadoptingF=0), we see that
while for S,,>0 it is almost symmetrical, foB,,<0 remains
strongly asymmetrical. It is precisely the first solutio®(
>0) that disappears &=F_.. Hence, forQ large enough,

periodic potential, producing an asymmetric effective potenand depending on the sign &, the noise’s symmetrizing

tial (that, if linearized, has a sawtooth profilehich, being

effect(that forQ extremely large destroys ordes markedly

turned on and off by the noise, produces a flux opposite t@nhanced by one of the solutioftee one wheré&,, has the

the the sign of5,,. In the ordered region the model has two
single-peaked solutions: one wit,<0, and another one

same sign af) and reduced by the othé@he one where&,,
has a sign opposite to that B). In the first casésign of S,

051106-5



MANGIONI, DEZA, AND WIO PHYSICAL REVIEW E 66, 051106 (2002

coincident with the sign ofF) a critical value ofF (F 5 (@)
=F.) exists, such that the effective potential becomes com- — ;: /
pletely symmetrical and the corresponding solution dissap- 2 2 /
pears(corresponding to the branch with,<0) while the § 1 / L
other (corresponding to the branch with,,>0) remains. % _?_ =" 2
This is the origin of the normal hysteretic behavior in the ‘;_2_
NDR. > .3l
-4
3. 7-dependence of phase boundary and IDR-NDR -5-2 -1 0o 1 2
transition line F (arb.units)
As in Ref.[18]—and as stated in Sec. Il A—throughout 59 (b)
this work we setT=2.0 andA=0.15. Our first task is to 41
investigate the effects that a nonzero self-correlation time :g g /
of the m_ultlphcatlve n0|se9;i.(t) p_roduces on thé, vs Q 5 4 /
phase diagram shown as Fig. 1 in Rgf8]. Figure 1 is an a0 {ff_’ ------- =N
extension to ther#0 case of Fig. 1 in Ref.18], drawn on © 11 e
the same scale; we have nonetheless altered slightly our T2
former conventions: the phase boundéigrmerly depicted > -3
as a solid ling is now indicated by dhick line, whereas the 41
line separating the IDR from the NDR—formerly indicated '5_2 A 0o . 1 2
by a dashed line—is now depicted ashin one. F (arb.units)
The most important effect of the multiplicative noises’
. . 5_
self-correlation is the appearander any 7+ 0) of reentrant 41 (©
behavior aghe coupling kg increases folQ= const(upper v 18 ez
branch of the phase boundaryhis (counterintuitive disor- s 2 P ==
dering effect of self-correlation in the IDR had already been g (1): P el SO
found in the mean-field analysis of a lattice model displaying S 1] T T
a similar (symmetry-breakingnonequilibrium phase transi- e 2] e
tion, jointly induced by coupling and noi$&6]. On the other > &y
hand, the lower branch of the phase boundary shifts toward :g_ , .
lower K, values and the reentrance with respec@téchar- -2 -1 E (arbounits) 1 2
acteristic of ther=0 behavioy tends to disappear asin- :
creases, which configures ardering effect in the NDR.
The boundary between the NDR and the IDR becomes 8~i' 4
almost independent a as 7 increases, and the aforemen- = 03] @
tioned cusp shifts rightwards. *§' 0.2
0.1 o P
g 0.0 s M
B. r-dependence of stationary PDF and transport properties "’Eg; ‘," i
at selected points > 03]
The 7 dependence of quantities such as the stationary :g:g :
PDF, the mobility and the efficiency of the mechanical con- 2 1 E (arg.units) 1

version process can only be studied at selected points in the
(Q,Kp) plane[alternatively, one could choose either to vary
Ko at fixed (r,Q), or Q at fixed (r,Ky)]. Point A in Fig.
1—with coordinate10.0,10.2— lies in the range analyzed
in Ref.[18]. PointB—with coordinate$16.0,6.6—was out-
side the range of interest far=0 but now(as we shall see
deserves due attention.

In a preliminary work[25] we have studied the depen- _
dence of the stationary PDF and that of the mobility at point 1. Summary of features at point A
A. We include here a brief sketch of the latter results in order )
to make explicit comparisons between that regime and that Figure 2 shows the evolution of the(X) vs F character-
corresponding to poir, regarding(a) the complexity of the istic at pointA. In order to facilitate the analysis of the en-
hysteresis cycle an¢b) the efficiencye of the mechanical ergetics in Sec. Il D, we have thickened in Fig. 2 those
rectification process. segments where>0 and marked a vertical line &=1.

FIG. 2. Evolution withr of the V,=(X) vs F characteristidin
MFA) at pointA: (a) 7=0.0; (b) 7=0.05; (c) 7=0.1; (d) 7=0.3.
Solid lines, stable branches; dashed lines, unstable branches; thick
lines, segments where>0. TheF=1 line has been highlighted.
Note the different vertical scale ifl).
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X (arb.units)

FIG. 3. Shape of the stationary PCF®{(x) at pointB, for F
=0.0 and different values of. Solid line, 7=0.0; dashed liner
=0.1; dotted line,;s=0.3; dot-dashed linez=1.0. Each asymmet-
ric PDF has its own reflected partnBf'(—x), not shown.

The transition from normal to anomalous hysteresis occurs at
this point for a value ofr such that thé= dominions of both
stable curves coincide.

The main feature is the existence in the ID&ases(c)
and (d)] of multiple unstable branches, characterized by dif-
ferent sets 085,, andC,,, (and generically by different values

of (X)) for each value oF. We have depicted only two of
them: those joining the stable branches, giving an altogether

closed curve in theR,(X)) plane(the crossings are simply a
projection effeck There is a third unstable branch not join-
ing any stable one, and hence not relevant for the analysis of
the hysteresis cycle. This unstable branch is not completely
irrelevant, however, since it extends beyond the rangg of
for which stable solutions exigtasedc) and(d)], indicating
the possible existence of a limit cycle that, at variance with
the result of[26], was actually found within a mean-field
scheme. Details about the characteristics of such a limit cycle
will be published elsewhere.

Another important feature is that one unstable branch al-

ways joins the stable ones &X)=0 (we shall see the con-
sequences of this in Sec. II)D

2. Analysis at point B

As Fig. 1 shows, this point lies well inside thisordered
region for 7=0, bordering the NDR forr=0.1, and just
inside the IDR forr=0.3. Hence not only the NDR-IDR
transition, but also the ordering phase transition can be moni-
tored for pointB as r increases. Note moreover that for
=0.3, this point is locatetb the leftof the aforementioned

PHYSICAL REVIEW BE6, 051106 (2002

V,, (arb.units)

N0 -=MNWHEO

V,, (arb.units)

h A

V_ (arb.units)

1@

2

2

/
—

cusp in the boundary between the IDR and the NDR. 3 -2 2 3
Figure 3 illustrates the evolution in the shape of the sta-
tionary mean-field PDF as increases. Fot=0 it is sym-
metric and(as stated befojehas peaks ak=0 andx=, -
the latter being higher than the former. For 0.1 symmetry &t POIntB: (@ 7=0.0 and 0.1;(b) 7=0.3; (c) 7=0.375; (d) 7
breakdown has occurred and two stable solutions of Eqs? 0.4. Solid lines, stable branches; dashed lines, unstable branches.
(13) and(14) with S,# 0 have appeared, which are such that
P3{(x)=P5(—x). In each of them we can see a depletion of 7=0.3 the PDF is still bimodal but the depletion of one
probability for x having one sign, in favor of the other. In region is significative and the peak near 0 dominates. For
particular, the peak formerly at= shifts towards lesser 7=1.0 the PDF has already become unimodal.
values of|x| and its height is roughly equal to that of the  Figure 4 follows ther evolution of the(X) vs F charac-
peak formerly atx=0 (which has also shifted a litle For teristic obtained in the MFA. The sequence is in some sense

A4 0 1
F (arb.units)

FIG. 4. Evolution withr of the(X) vs F characteristi¢in MFA)
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inverse to that shown in Fig. 7 of Rdf18] since asr in- 35
creases, the point enters the ordered phase “from the left” (@
(i.e., from the reentrant boundanContrary to what happens —
in the vicinity of the upper branch of the phase boundary "g 14 ’
(see, e.g., Fig. 6 in Refl8]) the “susceptibility” or zero- S / ’
o)
>

bias conductancén the unbroken-symmetry phasis posi-
tive in the vicinity of this brancH 7=0 curve in Fig. 43)].

At 7=0.1[also in Fig. 4a)] we see a smallnorma) hyster- £ .

esis loop that—together with the symmetry breakdown in the 2] ’

PDF—indicates that the system is already in the ordered 3 : , : : ,
i i i - -3 -2 =1 0o .1 2 3

phase(a fact not totally evident in Fig.)1 The pattern re F (arb.units)

sembles that shown in Fig(&@ (for point A at 7=0) in that
only oneunstable branclithe only one existing in the IDR

joins the stable ones. There is, however, an important differ- 6

ence: since the slope of the unstable branch in tgX)) n (b) y

plane is negative in this case, it can haasitiveefficiency E ,/

[a fact observed in Figs.(6) and 8a) and 8b) for F=1]. ' 21 ’
The mechanism whereby the hysteresis cycle reverses its _g 0 —

sense at poinB is however very different from that at point o

A. For larger values of [see in Fig. 4b) the situation atr ‘75-2' ./

=0.3] the mean-field characteristic becomes more and more > 4] /

kinky, and the projections of its stable branches cross. How- ’

ever, at7=0.375, real stable branch crossings ocdifig.

4(c)] (at F==+2.88(X)=+4.22335, both stable branches
have C,,=*0.15088$,,=*+0.28519). Thus—asr in-
creases further—the relevant unstable braificim a total of
three detaches from the stable branches it was attached to
for lower 7, and reattaches to the other ones. The hysteresis
loop thus reverses its cycJas can be seen far=0.4 in Fig.
4(d)] and becomes anomaloya behavior typical of the
IDR), but the reason here is simply that the “upper” and
“lower” stable branches have exchanged their roles.

6

C. The character of the transition around the cusp
and the complexity of the hysteresis cycle

In Ref. [18], the following feature was observed far 2 8
=0: whereas at the right of the cusp the character of the

hysteresis cycle changes from anomalous to normal in going

from the IDR to the NDR, on the left side the cycle remains 6 @

anomalous. This is also the pattern fonot too large(say, 4

0.1). For 7=0.3 instead, an anomalous-to-normal transition M) 2]

takes place at both sides of the cusp. In Fig. 5 we exhibit— g

for 7=0.3[see in Fig. 4b) the situation at point B—the(X) a0

vs F characteristic at the points marked with triangles in Fig. :_2_

1. There is a pair of such points at each side of the cusp in £

the thin dotted line of Fig. 1. For each pair, one point lies in > -4

the NDR[Figs. 5a) and 5c)] and the other in the IDIRFigs. "

5(b) and Fd)]. Note the different scales at both regimes. 6 4 2 0 2 4 6
Another featurdalready apparent in Figs(& and 4d), F (arb.units)

but that becomes evident in Figgbband 5d)] is the higher .

complexity in the shape of the stable branches in the IDR, FIG. 5. (X) vs F characteristidin MFA) around point B, for

for r=0.3. It is associated to the arising of five or more 7=0.3. Solid lines, stable branches; dashed lines, unstable
homogeneous solutions to the mean-field equations in theranches.(@ Q=16.0K,=5.0; (b) Q=16.0K,=8.0; (¢) Q
IDR. As these aspects could be a spurious result due to the20.0Ko=6.0; (d) Q=19.0K,=9.0.

mean-field scheme, we are presently undertaking the numeri-
cal simulation in this regime in order to confirm or reject the
features predicted by the mean-field treatment. Such results Figure 6 shows the efficienay— defined in Sec. Il C 3—
will be published elsewhere. as a function of, at pointA (in correspondence with Fig. 2,

D. Energetics

051106-8
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e (arb.units) g (arb.units)
0.00
0.00 @)
-0.02
-0.02 -0.04 -
-0.061 |
-0.04
-0.08
(a)
-0.06 7 5 ; -0.10 v
- - . - -1 0 1
F (arb.units) F (arb.units)
¢ (arb.units) e (@rb.units)
"~ (b) :
/-_\ -
0.00 == < -0.05 K
-0.10
-0.02- 0151 s
-0.20-
-0.04 4 0.95
0.06 - () -0.30
B A_ 0 . 1 3 2 4 0 1 2 3
F (arb.units) F (arb.units)
¢ (arb.units) ¢ (arb.units)
- 0.005 -
0.004 ©
0.002 0.004 -
0.000 0.003 1
0.002- 0.002- LTIl
’ < > A Y
0.004 - 0.001 4 ,I h
() / \
0.006 y 5 ; 0.000 —
F (arb.units) F (arb.units)
¢ (arb.units FIG. 7. Eﬁiqienc_;ye as a function of~, at pointB. (_a) 7=0.2;
( ) - (b) 7=0.4 [solid lines, stable branches; dotted lines, unstable
(d) e N branche} (c) £>0 region of the stable branchésolid line, 7
0.002- ) N =0.2; dashed liner=0.4).
4
\ .
) \ where we have thickened the ranges where0). For the-
K \ sake of completeness, we have also plottad F at pointB
0.0014 ¢ \ (Fig. 7, corresponding to Fig.4
N v Before we delve in the separate analysis of each such
N \ regime, we shall comment on some general features. As Figs.
oooo b \ 6 and 7 show, for each value efthere is an optimal value of

1
F (arb.units)

PHYSICAL REVIEW E6, 051106 (2002

|F| yielding the maximum efficiency. Moreover, Figs(dp
and 7c) tell us that the maximum expectable efficiency is of
the order of 10°.

Figures 6a) and Gb) derive respectively from Figs.(B)

FIG. 6. Efficiencye as a function ofF, at pointA. (@ = and 4c), where the(X) vs F hysteresis cycle is normal. In
=0.05; (b) 7=0.1; (c) 7=0.3[solid lines, stable branches; dotted the regions where thé dominions do not overlap, the stable
lines, unstable branches; note the different scaléchf (d) >0 branch in Fig. 2 has the sign &, so e<0 until F is re-
region of the stable branchésolid line, 7=0.05; dashed liner  verted. There becomes positive attaining a maximum value,
=0.1; dotted line,r=0.3). and vanishes exactly where the jump to the other stable
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branch(having a strongly negative efficiencgccurs. More- € (arb. units)

over, the open or closed character of the lower branch can be 0,00 et e

traced back to théopen or closedcharacter of th¢X) vs F TN -

characteristic, namely, to the existence of a single or multiple

unstable branches. -0.01 1 \
Figure &c) corresponds to Fig.(d), where the(X) vs F

hysteresis cycle is anomalous. A remarkable feature of this

case is that it is thenstablebranch that has a positive effi- 0.02

ciency of the order of 10° [dotted line in Fig. €)] whereas @)

the maximum positive efficiency for the stable one is of the 000 005 010 015 020 0.25
order of 10 [solid line in Fig. G¢) and dotted line in Fig. t (arb. units)

6(d)]. Here—in the regions where tHe dominions do not

overlap—the stable branch in Fig. 2 has opposite sigR;to o,go(frb' units)

so0 >0 (albeit very small until F is reverted. Therz be- (b)

comes negative until it joins the second unstable branch, and 0.0021 /
suddenly jumps from a negative value t¢vary smal) posi- 0.001 /

tive value. 0.000 ,

With regard to pointB, the value ofr in Fig. 7(a) is B W '
intermediate between those of Figgajand 4b), and cor- 0.0014 Y )
responds to a normal hysteresis cycle. The one in klp.i3 00024} \ )
that of the anomalous hysteresis cycle shown in Fd).4n ' )
both cases, the transition between stable branches does not '0'008.00 005 010 015 020 025
have an associated jump in(from the point of view of the 1 (arb. units)
efficiency the transition is less abrupt, since it occurs be-
tween close negative values of. e (arb. units)

Although the noise strengt® and self-correlation time 0.00 7
(as well as the global couplin,) are not control 0,02 .
parameters—as is the tht of the potential—it is nonetheless ) 1 /—-ﬁ
interesting to study how the efficieney of the mechanical -0.041 )
rectification process depends on them. Thus we have B EMEEETEREE L -
plotted—for F=1.0, highlighted in Figs. 2 and 4e-as a -0.061
function of 7, at pointsA [Figs. 8a) and &b)] andB [Figs. 0081
8(c) and &d)]. (c)

In both cases, the shape of the curve is that of a normal OIS o2 o2 o6 o8 10
hysteresis cycle. The stable branch starting 7a0.0 t (arb. units)
disappears—through a bifurcation resembling an inverse
saddle-node one—at a finite value®f(0.22 for pointA and ¢ (arb. units)

0.88 for pointB), and hase<0 throughout. On the other 0.002] @

hand, a direct bifurcation occurring affiaite value r4 (0.01 )

for point A and 0.17 for poinB) gives rise to a new stable 0.0011 [\

branch havings>0 (at F=1) for 7>174. For 7>7;, only \
the second branch remains. These plots can be understood by 0.000

recalling Figs. 2 and 4, respectively—namely, ¥g=(X) 00014

vs F plots for 7, Q, andK fixed—in the vicinity of F=1.

In the NDR—wherein the cycle is normal—tki) vs F -0.0021
characteristic exhibits two stable branches and an unstable 00 02 04 06 08 10
one, forming both inverséor F>0) and direct(for F<0) © (arb. units)

bifurcations. Both move towards=0 asr decreasesthe
width of the hysteresis loop diminishe&or some value of
the inverse bifurcation crosses the=1 line, in coincidence
with the direct one in Fig. 84 vs 7 plot).

On the other hand—again observing Figs. 2 and 4—an
anomalous-to-normal hysteresis transition occursras- In this paper, we have analyzed—within the MFA—the
creases. The bifurcations are exchanged: the inverse one caensequences of they(t) in Eqg. (2) being Ornstein-
responds td=<0 and the direct one t&6>0. Since these Uhlenbeck noises, with common strengtl@ and self-
bifurcations move toward§ =0 as 7 increases, thé&>0 correlation timer. Equation(2), together with Eqs(1), (4),
one gives rise to the inverse bifurcation in Fig. 8 for- 1. and(5) constitute the model set up in RgL7], whose mean-

FIG. 8. Efficiencye as a function ofr, for F=1.0: (a) at point
A; (b) detail of (a); (c) at pointB; (d) detail of (c).

IV. CONCLUSIONS
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field analysis forr=0 was thoroughly worked out in Refs. the casg hysteretic behavior with respect @, Ky, or 7,
[17,18. provided that the range on which that parameter is varied

(1) Consistent with the conclusions of a similar analysisgoes through the anomalous-normal hysteresis transition in
undertaken in Refd.16] for a lattice model, we observe a the (X) vs F characteristic.

reentrance in the phase diagram as a functiorkKgf not (5) The efficiencye of the mechanical rectification pro-
present for =0 (increasing the coupling beyond some cess depends strongly on the parameters of the model, and
value, the system getlisorderedagain. On the other hand, can be maximized for certain combinations of them. In
in the (NDR) there is arordering effect, since the trend as particular—givenQ, Ko, and| F|_there is an optimum self-
increases is to “wash out” the reentrance as a functio@of correlation time of the flashing potentials.

(2) The line below whicha single “homogeneous” Gy (6) In the regimes analyzed in this paper, it is impossible
=0) solution exists to the MFA self-consistency equationsto haves >0 if the multiplicative noises are white. In order
[Egs. (13) and (14)] (an MFA indicator of the IDR-NDR that the coupled ratchets make useful work, the self-
transition shifts toward lowerK, values and flattens; at the correlation timer must overcome a certain threshold value.
same time, its characteristic cusp shifts toward la@esal-
ues.

(3) Color affects severely the response of the particle cur- ACKNOWLEDGMENTS

rgnt to the bias forcg. As incre.ases,' there appear new solu- The authors thank R. Toral for enlightening suggestions
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