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Coupling-reentrant phase transition, complex hysteretic behavior, and efficiency optimization
in coupled phase oscillators submitted to colored flashing potentials
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A recent mean-field analysis of a model consisting ofN nonlinear phase oscillators—under the joint influ-
ence ofglobal periodiccoupling with strengthK0 and of local multiplicativeand additive noises—has shown
a nonequilibrium phase transition towards a broken-symmetry phase exhibiting noise-induced transport, or
‘‘ratchet’’ behavior. In a previous paper we focused on the relationship between the character of the~mean

velocity ^Ẋ& vs load forceF) hysteresis loop, the number of ‘‘homogeneous’’ mean-field solutions, and the
shape of the stationary mean-field probability distribution function~PDF!. Here we assume that the multipli-
cative noises of the model areOrnstein-Uhlenbeckwith common strengthQ and self-correlation timet. By
resorting to an effective Markovian approximation, we study thet dependence of the phase boundary, and that
of the line signaling the transition from the ‘‘interaction-driven regime’’ to the ‘‘noise-driven regime.’’ We also
study—for selected representative points of theK0 vs Q phase diagram—thet dependence of the transport
properties induced by coupling and colored multiplicative noise~including the efficiency« of the mechanical
rectification process! and that of the above-mentioned PDF.
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I. INTRODUCTION

Evidence accumulated mainly over the last 3 decades
radically changed our traditional concept of noise as a n
sance. A vast collection of phenomena that seem to be
neric in far-from-equilibrium situations teaches us that flu
tuations can also play aconstructiverole. A partial list of
such phenomena includes noise-induced unimodal-bim
transitions in some zero-dimensional models~describing ei-
ther concentrated systems or uniform fields! @1#, shifts in
critical points @2#, stochastic resonance in zero-dimensio
and extended systems@3,4#, noise-delayed decay of unstab
states@5#, noise-induced spatial patterns@6#, etc. A Langevin
description of the systems exhibiting such phenomena
veals common aspects among most of them: on one hand
intrinsic dynamics is nonlinear; on the other, fluctuatio
usually actmultiplicativelyon the system, i.e., their represe
tative variables appear in the corresponding Langevin eq
tions multiplying ~usually nonlinear! functions of the sys-
tem’s variables. In this paper we shall focus on two oth
phenomena in the same class as the aforementioned co
tion: noise-inducedphase transitions in extended system
@6,7#, and noise-driventransport ~‘‘Brownian motors’’ or
‘‘ratchets’’ @8#, nicely discussed by Feynman@9# and inspir-
ing the present development of a ‘‘nanomechanics’’ that ra
cally departs from the principles upon which macrosco
machines are built@10#!.

For the sake of mathematical simplicity, multiplicativ
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noises are usually modeled as white. This impliesexcluding
from the outsettime scales that are much shorter than t
‘‘deterministic’’ ~i.e., coarse-grained! ones of the system the
couple to, andassumingat the same time that the typica
correlation time of the fluctuations is still well below th
cutoff time scale. We should keep in mind, however, tha
multiplicative noise is nonetheless but an effective model
the action of an external source that exchanges energy
the system in a far-from-equilibrium regime, and has its o
characteristic time scales~not always negligible with respec
to those of the system!. In most cases, the above assumpti
is too simplistic, since the self-correlation timet of fluctua-
tions coupled multiplicatively to the system—although sh
compared with the deterministic time scales—is measura
and non-negligible@1,11–14#. Thus motivated~and aware of
the nontrivial effects produced by colored noise in ze
dimensional models, such as the reentrance as a functiont
found in Ref.@15#! in Refs. @16# we have explored—in the
mean-field approximation~MFA!—the consequences of le
ting the multiplicative noises in the model of Refs.@7#! have
a finite t.

In Ref. @17# a ratchetlike transport mechanism was sho
to arise—through a symmetry-breaking nonequilibriu
phase transition—in a system of nonlinear phase oscilla
that interact throughperiodic forces, while being submitted
to multiplicativewhite noises~as well as additive or therma
ones! and deterministic external forces. The latter, as well
the functions to which the multiplicative noises couple, c
be derived fromsymmetricperiodic potentials. The nonequ
librium phase transition—jointly induced by the couplin
and the multiplicative noises—isreentrantas the latter be-
come too strong. Among the most prominent novel featu
found by the authors in Ref.@17# through a strong-coupling
©2002 The American Physical Society06-1
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analysis, we may citenegative mobilityjust outside the left
phase boundary, andanomalous hysteresisinside it. In Ref.
@18# we performed a mean-field analysis of the whole
dered phase and found a transition in the character of
hysteresis cycle, which is in turn intimately associated to
number of a certain kind of solutions to the mean-field eq
tions, and with the shape of the stationary probability dis
bution.

As in Refs.@16#, in this paper we study the effects of
nonzero self-correlation timet ~color! of the multiplicative
noises, using a mean-field scheme. Our main findings are~1!
the transition becomesreentrantas a function ofK0 ~for t
Þ0, ordering is possible onlybelow certain critical cou-
pling!; ~2! for large enought, the response of the particl
current^Ẋ& to the load forceF becomes very complex;~3!
the efficiency « of the mechanical rectification proces
shows a strong dependence on the parameters of the m
and can be maximized for certain combinations of the
Moreover, in order that the coupled ratchets make us
work, the self-correlation timet must overcome a certai
threshold value.

In Sec. II we sketch the main features of the model and
its mean-field analysis~discussed extensively in Ref.@18#!
and the way it has to be modified to account for finitet. In
Sec. III we discuss our numerical mean-field results w
regard to the phase diagram, stationary probability distri
tion function ~PDF!, hysteretic behavior, and the energet
of the process. Finally, in Sec. IV we give our conclusion

II. THE MODEL AND ITS MEAN-FIELD ANALYSIS

A. The model

As in Ref. @18#, we consider the following system ofN
globally coupled stochastic differential equations~interpreted
in the Stratonovich sense! for the phases Xi(t)
P@2L/2,L/2# @17#:

Ẋi5F2
]Ui

]Xi
2

1

N (
j 51

N

K~Xi2Xj !G1A2T j i~ t !, ~1!

where we assumeN to be very large~except for numerical
simulations, its particular value is unimportant!. The term
outside the brackets is nothing but a Langevin force, mod
ing the effect of thermal fluctuations:T represents the tem
perature of the environment~as in Refs.@17,18# we shall
adopt T52 throughout! and thej i(t) are local, additive,
Gaussian white noises with zero mean and varia
1@^j i(t)&50,^j i(t)j j (t8)&5d i j d(t2t8)#.

The interesting features in Eq.~1! come from the terms
inside the brackets. In terms of the phaselike real variab
x,y that run over the range@2L/2,L/2# of the stochastic
processesXi(t),Xj (t), they are the local ‘‘pulsating’’ poten
tials Ui(x,t) and the interaction-force functionK(x2y)
52K(y2x) between phase oscillators. The latter is aperi-
odic function of x2y, with period L; the former have the
form

Ui~x,t !5@V~x!2Fx#1W~x!A2Q h i~ t !. ~2!
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The terms inside the brackets are global and static: a po
tial V(x) and an eventual ‘‘load force’’F, which is just a tool
for the analysis of the noise-induced ratchet effect. The
teresting features in Eq.~2! are thefluctuatinglocal terms, in
which Gaussian noisesh i(t) of a nonthermal origin couple
multiplicatively ~with intensity Q) to the phasesXi(t),
through a global functionW(x). Both V(x) and W(x) are
periodic functions ~with period L), and moreover they are
symmetric: @V(2x)5V(x),W(2x)5W(x)#, which means
that there is nobuilt-in ratchet effect.

At variance with our former work@18#, we now assume
that theh i(t) are Ornstein-Uhlenbeck:

^h i~ t !&50, ^h i~ t !h j~ t8!&5
1

t
d i j exp~2ut2t8u/t!. ~3!

Following Ref.@17# we adoptL52p and

V~x!5W~x!52cosx2A cos 2x with A50.15, ~4!

K~x!5K0sinx with K0.0. ~5!

As discussed in Ref.@18#, whenA.0 in Eq. ~4!, the direc-
tion of the particle current̂Ẋ& is oppositeto that of symme-
try breaking in the stationary probability distributionPst(x)
~see Sec. II C for the definition of these magnitudes!, which
leads in turn tonegative zero-bias conductanceandanoma-
lous hysteresis. With the choice in Eq.~5!, the second term in
Eq. ~1! can be cast asK0@Ci(t)sinXi2Si(t)cosXi#, with
Ci(t)[N21( jcosxj(t) andSi(t)[N21( jsinxj(t).

Besidest, the important parameters in the model just s
up areK0 ~governing mostly the ‘‘drift’’ terms in this set of
generalized Langevin equations!, and Q ~governing mostly
the ‘‘diffusion’’ ones!. For A→0, this model can be visual
ized as a set of overdamped pendulums~only their phases
matter, not their locations! interacting with one anothe
through a force proportional to the sine of their phase diff
ence~this force is always attractive in the reduced interv
2p<x2y<p).

B. The approximations

1. Mean-field approximation

In Ref. @18#—the Gaussian stochastic variablesh i(t) and
h i(t8) being independentfor t8Þt—one could simply add
~for eacht) j i(t) to h i(t), and regard theh i(t) aseffective
multiplicative Gaussian noises. Equation~1! was then ap-
proximated~for N→`) in the manner of Curie-Weiss, re
placing Ci(t) and Si(t) by new parametersCm and Sm ,
respectively—determined as usual by self-consistency—
decoupling the system of stochastic differential equatio
~SDE!. We thus obtained within this MFA aMarkovianSDE
for the single stochastic processX(t) @19#:

Ẋ5 f ~X;Cm ,Sm!1g~X!h~ t !, ~6!

where g(x)5A2@T1Q(W8)2# and f (x;Cm ,Sm)52V8(x)
1F2K0(Cmsinx2Smcosx). The associated Fokker-Planc
equation~FPE! for the ~one-time! PDF P(x,t;Cm ,Sm) was
6-2
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] tP5]x$2@ f ~x!1 1
2 g~x! g8~x!#P%1 1

2 ]xx@g2~x!P#.
~7!

This can always be cast as a continuity equation] tP1]xJ
50, so that in the stationary case] tP50 it is
J(x,t;Cm ,Sm)5const5J(Cm ,Sm).

2. Unified colored-noise approximation

In the present case, neither can we lumpj i(t) andh i(t)
together nor do we retrieve in the MFA a Markovian SD
The equivalent of Eq.~6! is now the following system:

Ẋ5 f ~X;Cm ,Sm!1G~X! h~ t !1A2T j~ t !,

tḣ52h~ t !1z~ t !, ~8!

which yields a Markovian process in an extended (X,h)
space, but not inX space. In Eq.~8! f (x;Cm ,Sm) is the same
as before,G(x)5A2QW8(x), and z(t) is another white
noise:

^z~ t !&50, ^z~ t !z~ t8!&5d~ t2t8!, ^z~ t !j~ t8!&50.

For non-Markovian processes, a FPE can at most re
from some~nonsystematic! approximation, e.g., the trunca
tion of a short-t expansion. Fortunately, under certain co
ditions aconsistentMarkovian approximation@called ‘‘uni-
fied colored-noise approximation’’~UCNA!# can be
performed@20#. A long calculation involving path integral
@21# shows that in theQ@T regime one can still use Eq.~6!
@and hence Eq.~7!, as if X(t) were a Markovian process#,
with new functions that keep information ont:

f ~x;Cm ,Sm ,t!5 f ~x;Cm ,Sm!/h~x;Cm ,Sm ,t!

and

g~x;Cm ,Sm ,t!5g~x!/h~x;Cm ,Sm ,t!,

where

h~x;Cm ,Sm ,t!512tg~x!@ f ~x;Cm ,Sm!/g~x!#8

~the prime stands for the derivative with respect tox).
The UCNA becomes exact not only ast→0, but also for

t→` @20#. For finitet, the behavior off (x;Cm ,Sm ,t) and
g(x;Cm ,Sm ,t) depends on@ f (x;Cm ,Sm)/g(x)#8; in some
cases~though not in the present work! they can even becom
singular, and one must resort to interpolation methods to
trieve meaningful results@16,22#.

C. Relevant magnitudes

1. The stationary PDF

The normalized stationary solution of Eq.~7! with peri-
odic boundary conditionsand current densityJ(Cm ,Sm ,t)
Þ0 is

Pst~x;Cm ,Sm ,t!5
e2f(x;Cm ,Sm ,t) H~x;Cm ,Sm ,t!

N~Cm ,Sm ,t! g~x;Cm ,Sm ,t!
, ~9!
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f~x;Cm ,Sm ,t!522E
0

x

dy
f ~y;Cm ,Sm ,t!

g2~y;Cm ,Sm ,t!
,

H~x;Cm ,Sm ,t!5E
x

x1L

dy
exp@f~y;Cm ,Sm ,t!#

g~y;Cm ,Sm ,t!
,

and N(Cm ,Sm ,t) is a normalization constant. Althoug
f (x;Cm ,Sm ,t), g(x;Cm ,Sm ,t), and Pst(x;Cm ,Sm ,t) are
periodic by construction,f(x;Cm ,Sm ,t) increases in each
cycle by a constant amount@18#. Note also that
Pst(x;Cm ,Sm ,t)>0 requiresg(x;Cm ,Sm ,t).0, which is a
further test for the adequacy of the UCNA.

In the appendix of Ref.@18# it is shown that

J~Cm ,Sm ,t!5
12ef(L;Cm ,Sm ,t)

2N~Cm ,Sm ,t!
, ~10!

hence the sign ofJ is that of 12ef(L) and—on the other
hand—the ‘‘holonomy’’ conditionef(L)51 impliesJ50 and
H(x;Cm ,Sm ,t)5const5H(Cm ,Sm ,t). Equation ~10! is a
self-consistency relation since bothN andf(L) keep infor-
mation on the shape ofPst(x) throughCm andSm . A non-
zero J is always associated with a symmetry breakdown
Pst(x) @namely,Pst(2x)ÞPst(x)]. This may be eitherin-
ducedby a nonzeroF or spontaneous~our main concern
here!.

2. The particle current

The appearance of a ratchet effect amounts to the e
tence of a nonvanishing drift term̂Ẋ& in the stationary state
in the absence of any forcing (F50). The cause of this
spontaneous particle current~the pendulums become rotato
in an average sense! is the noise-induced asymmetry i
Pst(x) @17#.

As it is shown in the appendix of Ref.@18#,

^Ẋ&5E
2L/2

L/2

dx Pst~x;Cm ,Sm ,t!@ f ~x;Cm ,Sm ,t!

1 1
2 g~x;Cm ,Sm ,t!g8~x;Cm ,Sm ,t!#, ~11!

which after some calculation yields

^Ẋ&5LH 12ef(L)

2N J 5L J, ~12!

hencê Ẋ& has the sign ofJ and, being a measurable quantit
will be regarded as the order parameter in what follows.

3. Energetics of the process

Following Ref.@23#, we shall analyze the energetics of th
process in terms of the following~specific, i.e., per particle!
magnitudes:
6-3
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~a! Ėin5^Ẋ G(X)h(t)&5(2Q/t)^(W8)2&. Power deliv-
ered to the system by the external fluctuations, as obta
from Eqs.~8!.

~b! Ėout52^Ẋ&F. Power delivered by the system again
the forceF.

From these we may calculate the efficiency«5Ėout /Ėin of
the mechanical rectifying process and~since the internal en
ergy of the system is constant in the stationary regime! the
dissipated powerq5Ėin2Ėout , as well as the entropy pro
duction Ṡ5q/T per particle.

D. Relevant equations

1. The self-consistency equations

As stated before, the values ofSm and Cm arise from
requiring self-consistency, which amounts to solving~for
given Q, K0 , F, and t) the system of nonlinear integra
equations

Fcm~Cm ,Sm ,t!5Cm , ~13!

Fsm~Cm ,Sm ,t!5Sm , ~14!

where

Fcm~Cm ,Sm ,t![^cosx&5E
2L/2

L/2

dx cosxPst~x;Cm ,Sm ,t!,

Fsm~Cm ,Sm ,t![^sinx&5E
2L/2

L/2

dx sinxPst~x;Cm ,Sm ,t!.

These equations give

Cm~Q,K0 ,F,t! and Sm~Q,K0 ,F,t!

for each set of the parameters that define the state of
system.

For F50 there are always one or more solutions to E
~13! and~14! with Sm50, and one of them is the stable on
in the ‘‘disordered’’ phase@in this casePst(x) is an even
function ofx]. So the problem of self-consistency reduces
the numerical search of solutions to Eq.~13!, with Sm50
~what in Ref. @18# we have called ‘‘homogeneous solu
tions’’!. Since cosx in this equation is an even function ofx,
in order to determine the stability of these solutions it s
fices to use the Curie-Weiss~one-parameter! criterion, i.e., to
check whether the slope ofFsm at Sm50 is ,1 or .1.

As argued in Ref.@17#, for N→` a noise-induced non
equilibrium transition takes placegenerically towards an
‘‘ordered’’ phase wherePst(2x)ÞPst(x). In the present
scheme this asymmetry should be evidenced by the fact
the solution withSm50 becomes unstable in favor of oth
two solutions such thatP2

st(x)5P1
st(2x), characterized by

nonzerovalues6uSmu ~this fact confers alsoSm the rank of
an order parameter, but we shall use^Ẋ& to that end!. None-
theless, even in the ordered phase the ‘‘homogeneous’’ s
tions are of interest@this time as a secure starting guess
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the Newton-Raphson solution of Eqs.~13! and ~14!, given
the fact that some solutions may suddenly disappear#.

2. The phase boundary

Equation~14! proves impractical for the task of findin
the curve that separates the ordered phase from the d
dered one, since on that curveSm is still zero. For that goal
~exclusively!, we solve, instead of Eqs.~13! and ~14!, the
following system:

E
2L/2

L/2

dx cosxPst~x;Cm,0,t!5Cm , ~15!

E
2L/2

L/2

dx sinx
]

]Sm
Pst~x;Cm ,Sm ,t!uSm5051. ~16!

III. NUMERICAL MEAN-FIELD RESULTS

A. K0 vs Q phase diagram

1. Summary of thetÄ0 results

In Ref. @18#—besides obtaining within the MFA a phas
boundary that fully coincided with that~numerical! in Fig.
1~b! of Ref. @17#—we have shown that a transition take
place inside the ordered phase, in the behavior of the sys

~1! For K0 /Q large enough~‘‘interaction-driven regime’’
or IDR! the system typically exhibits ananomalous~namely,
clockwise! hysteresis cycle in itŝẊ& vs F characteristic, and
unimodalstationary PDF.

~2! For lower values ofK0 /Q ~‘‘noise-driven regime’’ or
NDR! the ^Ẋ& vs F characteristic showsnormal ~counter-
clockwise! hysteresis and the PDF becomesbimodal, re-
maining so asQ increases~or K0 decreases! further. As the
disordered region is reentered the PDF becomes symm
again, the peak atp being then higher than that at 0~see Fig.
3 in Ref. @18# and thet50 PDF in Fig. 3 of this paper!.

A good estimation of the boundary between the IDR and
NDR was provided in Ref.@18# by the line separating two
sectorswithin the ordered regionwith regard to the ‘‘homo-
geneous’’ (Sm50) solutions to the MFA self-consistenc
equations: below it~NDR!, there isa singlesuch solution to
Eqs.~13! and ~14!; above it~IDR!, there are three, five, etc
This line presented a cusp whose meaning we investigate
Ref. @18# for t50, finding a physical feature~i.e., one not
attributable to MFA artifacts!: whereas the character of th
hysteresis loop changed from anomalous to normal in go
from the IDR to the NDR to the right of this cusp, it re
mained anomalous while crossing this line on the left sid

Since the transition from anomalous to normal hystere
in going from the IDR to the NDR is typically preceded b
the disappearance ofpairs of solutions withSm50, the line
in the phase diagram below whicha single‘‘homogeneous’’
solution exists~dashed line in Fig. 1 of Ref.@18# and solid
thin line in Fig. 1 of this paper! provides an estimationof the
place at which the former transition occurs. Of course b
phenomena are different, and so the disappearance of a
of solutions withSm50 does not implyan anomalous-to-
6-4
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normal transition~an example of this assertion is that the
was no change in the character of the hysteresis loop a
left of the cusp!.

It must be emphasized that^Ẋ& ~denoted asVm in the
figures! shows hysteretic behavior as a function ofF every-
where inside the ordered phase@24#. In the IDR, theheight
of the ~anomalous! hysteresis loop increases continuously
the phase boundary (^Ẋ& acts as an order parameter in
second-order phase transition!. Instead, the disappearance
the ~normal! hysteresis loop in the NDR proceeds by shrin
ing its width at a more or less finite height~although the
transition at the reentrance is ofsecondorder, it is so steep
that it resembles a first order one!.

2. The PDF and the hysteresis’ character

Here we want to discuss the relation between the PDF
the normal or anomalous character of the hysteresis loop
reach this goal, we recall that in Ref.@18# we have intro-
duced the idea of aneffective potentialthat includes severa
contributions. First, a term corresponding to the symme
potential V(x)5cosx12Acos 2x, affecting all oscillators.
Second, a term that corresponds to the mutual interac
between the oscillatorsK0(Cmsinx2Smcosx). And finally,
third and fourth terms arising from the load forceF, and a
symmetric one arising from the Stratonovich prescription
treat the noisy term@yielding a term given byQ times
S(x)S8(x)/2], respectively.

Anomalous hysteretic behavior. The anomalous hysteres
loop arises in the IDR, the region where the interaction~the
second term indicated above! breaks the symmetry of th
periodic potential, producing an asymmetric effective pot
tial ~that, if linearized, has a sawtooth profile! which, being
turned on and off by the noise, produces a flux opposite
the the sign ofSm . In the ordered region the model has tw
single-peaked solutions: one withSm,0, and another one

FIG. 1. K0 vs Q phase diagram of the model forF50. Solid
lines, t50.0; dashed lines,t50.1; dotted lines,t50.3. For each
value of t the ordered region lies above and to the right of t
corresponding thick line. Above the thin lines there may exist s
eral solutions whenSmÞ0, whereas below them there may exist
most one. PointsA5(10.0,10.2) andB5(16.0,6.6) indicate two
different regimes at which the transport properties and the shap
Pst(x) have been investigated. The triangles are explained in
III C.
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with Sm.0, whose moduli, forF50, are equal. A strong
enoughF washes out the potential wells eliminating the po
sibility of stationary solutions and inducing a limit cycl
~that, as indicated in Sec. III B 1, has been actually found a
will be discussed in detail elsewhere!.

However, one of the stationary solutions disappears
fore the other. Such a solution is the one with the signSm

opposite to the sign ofF ~that is, if F.0, the one withSm

,0 is the first to disappear!. Looking at thevm vs F dia-
gram, for a critical value ofF, it is the vm.0 branch that
first disappears, while the other survives until another, larg
critical value ofF is reached. This produces the anomalo
hysteretic behavior.

The relevant question is, clearly, why the branch with t
sign ofSm opposite to the one ofF disappears first? In orde
to understand this, we can resort to the coupled pendul
picture ~caseA50). Each value ofSm corresponds to a po
sition of the pendulum at each side of the symmetry ax
When a load force is applied in a given direction, it reduc
one of those angles while increasing the other. For insta
if F.0, the angle withSm,0 is reduced and that withSm
.0 is increased. As the value ofSm controls the asymmetry
of the effective potential~for larger uSmu it becomes more
asymmetric, and forSm50 it becomes fully symmetric!, in-
creasingF we not only wash out the potential wells but
addition reduce the asymmetry of the solution forSm,0 and
enhance the one withSm.0. This is the reason why, at
smaller critical value, the solution withSm,0 disappears
first. WhenF,0 we have the specular situation.

Normal hysteretic behavior. When the noise intensityQ is
very large, it can completely hide the effect of the couplin
and the effective potential becomes symmetric again, w
only one stable solution~with vm50 if F50). For smaller
values ofQ, but still large enough to dominate the couplin
the solutions show values ofSm that varies only sightly with
F. This can again be understood resorting to the coup
pendulums example. We have shown@18# that in the NDR,
for each solution (Sm.0 andSm,0), the PDF presents two
peaks, one near zero and the other nearp. ForF.0, the two
angles~or peaks! corresponding toSm,0 approach the sym
metry axis~one →0 and the other→p), while the corre-
sponding ones forSm.0 depart from the axis. Due to th
symmetry of their positions, the mean values correspond
to Sm,0 and Sm.0 will remain approximately constant
This means that, on one hand, whenF grows, the peaks of
the PDF forSm,0 separate, while those corresponding
Sm.0 tend to coalesce. On the other hand, comparing
form of the effective potential for both solutions (Sm,0 and
Sm.0) for a value ofF near the critical oneFc ~but, and
only for comparison purposes, adoptingF50), we see that
while for Sm.0 it is almost symmetrical, forSm,0 remains
strongly asymmetrical. It is precisely the first solution (Sm
.0) that disappears atF5Fc . Hence, forQ large enough,
and depending on the sign ofF, the noise’s symmetrizing
effect~that forQ extremely large destroys order! is markedly
enhanced by one of the solutions~the one whereSm has the
same sign asF) and reduced by the other~the one whereSm
has a sign opposite to that ofF). In the first case~sign ofSm

-

of
c.
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coincident with the sign ofF) a critical value of F (F
5Fc) exists, such that the effective potential becomes co
pletely symmetrical and the corresponding solution diss
pears~corresponding to the branch withvm,0) while the
other ~corresponding to the branch withvm.0) remains.
This is the origin of the normal hysteretic behavior in t
NDR.

3. t-dependence of phase boundary and IDR-NDR
transition line

As in Ref. @18#—and as stated in Sec. II A—througho
this work we setT52.0 andA50.15. Our first task is to
investigate the effects that a nonzero self-correlation timt
of the multiplicative noisesh i(t) produces on theK0 vs Q
phase diagram shown as Fig. 1 in Ref.@18#. Figure 1 is an
extension to thetÞ0 case of Fig. 1 in Ref.@18#, drawn on
the same scale; we have nonetheless altered slightly
former conventions: the phase boundary~formerly depicted
as a solid line! is now indicated by athick line, whereas the
line separating the IDR from the NDR—formerly indicate
by a dashed line—is now depicted as athin one.

The most important effect of the multiplicative noise
self-correlation is the appearance~for anytÞ0) of reentrant
behavior asthe coupling K0 increases forQ5const ~upper
branch of the phase boundary!. This ~counterintuitive! disor-
dering effect of self-correlation in the IDR had already be
found in the mean-field analysis of a lattice model display
a similar ~symmetry-breaking! nonequilibrium phase transi
tion, jointly induced by coupling and noise@16#. On the other
hand, the lower branch of the phase boundary shifts tow
lower K0 values and the reentrance with respect toQ ~char-
acteristic of thet50 behavior! tends to disappear ast in-
creases, which configures anordering effect in the NDR.

The boundary between the NDR and the IDR becom
almost independent ofQ as t increases, and the aforeme
tioned cusp shifts rightwards.

B. t-dependence of stationary PDF and transport properties
at selected points

The t dependence of quantities such as the station
PDF, the mobility and the efficiency of the mechanical co
version process can only be studied at selected points in
(Q,K0) plane@alternatively, one could choose either to va
K0 at fixed (t,Q), or Q at fixed (t,K0)]. Point A in Fig.
1—with coordinates~10.0,10.2!— lies in the range analyze
in Ref. @18#. PointB—with coordinates~16.0,6.6!—was out-
side the range of interest fort50 but now~as we shall see!
deserves due attention.

In a preliminary work@25# we have studied thet depen-
dence of the stationary PDF and that of the mobility at po
A. We include here a brief sketch of the latter results in or
to make explicit comparisons between that regime and
corresponding to pointB, regarding~a! the complexity of the
hysteresis cycle and~b! the efficiency« of the mechanical
rectification process.
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1. Summary of features at point A

Figure 2 shows thet evolution of thê Ẋ& vs F character-
istic at pointA. In order to facilitate the analysis of the en
ergetics in Sec. III D, we have thickened in Fig. 2 tho
segments where«.0 and marked a vertical line atF51.

FIG. 2. Evolution witht of theVm[^Ẋ& vs F characteristic~in
MFA! at point A: ~a! t50.0; ~b! t50.05; ~c! t50.1; ~d! t50.3.
Solid lines, stable branches; dashed lines, unstable branches;
lines, segments where«.0. TheF51 line has been highlighted
Note the different vertical scale in~d!.
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The transition from normal to anomalous hysteresis occur
this point for a value oft such that theF dominions of both
stable curves coincide.

The main feature is the existence in the IDR@cases~c!
and ~d!# of multiple unstable branches, characterized by d
ferent sets ofSm andCm ~and generically by different value
of ^Ẋ&) for each value ofF. We have depicted only two o
them: those joining the stable branches, giving an altoge
closed curve in the (F,^Ẋ&) plane~the crossings are simply
projection effect!. There is a third unstable branch not joi
ing any stable one, and hence not relevant for the analys
the hysteresis cycle. This unstable branch is not comple
irrelevant, however, since it extends beyond the range oF
for which stable solutions exist@cases~c! and~d!#, indicating
the possible existence of a limit cycle that, at variance w
the result of@26#, was actually found within a mean-fiel
scheme. Details about the characteristics of such a limit c
will be published elsewhere.

Another important feature is that one unstable branch
ways joins the stable ones at^Ẋ&50 ~we shall see the con
sequences of this in Sec. III D!.

2. Analysis at point B

As Fig. 1 shows, this point lies well inside thedisordered
region for t50, bordering the NDR fort50.1, and just
inside the IDR fort50.3. Hence not only the NDR-IDR
transition, but also the ordering phase transition can be m
tored for pointB as t increases. Note moreover that fort
50.3, this point is locatedto the leftof the aforementioned
cusp in the boundary between the IDR and the NDR.

Figure 3 illustrates the evolution in the shape of the s
tionary mean-field PDF ast increases. Fort50 it is sym-
metric and~as stated before! has peaks atx50 andx5p,
the latter being higher than the former. Fort50.1 symmetry
breakdown has occurred and two stable solutions of E
~13! and~14! with SmÞ0 have appeared, which are such th
P2

st(x)5P1
st(2x). In each of them we can see a depletion

probability for x having one sign, in favor of the other. I
particular, the peak formerly atx5p shifts towards lesse
values ofuxu and its height is roughly equal to that of th
peak formerly atx50 ~which has also shifted a little!. For

FIG. 3. Shape of the stationary PDFPst(x) at point B, for F
50.0 and different values oft. Solid line, t50.0; dashed line,t
50.1; dotted line,t50.3; dot-dashed line,t51.0. Each asymmet
ric PDF has its own reflected partnerPst(2x), not shown.
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ft50.3 the PDF is still bimodal but the depletion of on
region is significative and the peak nearx50 dominates. For
t51.0 the PDF has already become unimodal.

Figure 4 follows thet evolution of the^Ẋ& vs F charac-
teristic obtained in the MFA. The sequence is in some se

FIG. 4. Evolution witht of the^Ẋ& vs F characteristic~in MFA!
at point B: ~a! t50.0 and 0.1;~b! t50.3; ~c! t50.375; ~d! t
50.4. Solid lines, stable branches; dashed lines, unstable bran
6-7
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inverse to that shown in Fig. 7 of Ref.@18# since ast in-
creases, the point enters the ordered phase ‘‘from the l
~i.e., from the reentrant boundary!. Contrary to what happen
in the vicinity of the upper branch of the phase bound
~see, e.g., Fig. 6 in Ref.@18#! the ‘‘susceptibility’’ or zero-
bias conductance~in the unbroken-symmetry phase! is posi-
tive in the vicinity of this branch@t50 curve in Fig. 4~a!#.
At t50.1 @also in Fig. 4~a!# we see a small~normal! hyster-
esis loop that—together with the symmetry breakdown in
PDF—indicates that the system is already in the orde
phase~a fact not totally evident in Fig. 1!. The pattern re-
sembles that shown in Fig. 2~a! ~for point A at t50) in that
only oneunstable branch~the only one existing in the IDR!
joins the stable ones. There is, however, an important dif
ence: since the slope of the unstable branch in the (F,^Ẋ&)
plane is negative in this case, it can havepositiveefficiency
@a fact observed in Figs. 6~d! and 8~a! and 8~b! for F51].

The mechanism whereby the hysteresis cycle reverse
sense at pointB is however very different from that at poin
A. For larger values oft @see in Fig. 4~b! the situation att
50.3] the mean-field characteristic becomes more and m
kinky, and the projections of its stable branches cross. H
ever, att50.375, real stable branch crossings occur@Fig.
4~c!# ~at F562.88,̂ Ẋ&564.223 35, both stable branche
have Cm560.150 88,Sm560.285 19). Thus—ast in-
creases further—the relevant unstable branch~from a total of
three! detaches from the stable branches it was attache
for lower t, and reattaches to the other ones. The hyster
loop thus reverses its cycle@as can be seen fort50.4 in Fig.
4~d!# and becomes anomalous~a behavior typical of the
IDR!, but the reason here is simply that the ‘‘upper’’ an
‘‘lower’’ stable branches have exchanged their roles.

C. The character of the transition around the cusp
and the complexity of the hysteresis cycle

In Ref. @18#, the following feature was observed fort
50: whereas at the right of the cusp the character of
hysteresis cycle changes from anomalous to normal in go
from the IDR to the NDR, on the left side the cycle remai
anomalous. This is also the pattern fort not too large~say,
0.1!. For t>0.3 instead, an anomalous-to-normal transit
takes place at both sides of the cusp. In Fig. 5 we exhib
for t50.3 @see in Fig. 4~b! the situation at point B#—the^Ẋ&
vs F characteristic at the points marked with triangles in F
1. There is a pair of such points at each side of the cus
the thin dotted line of Fig. 1. For each pair, one point lies
the NDR@Figs. 5~a! and 5~c!# and the other in the IDR@Figs.
5~b! and 5~d!#. Note the different scales at both regimes.

Another feature@already apparent in Figs. 4~c! and 4~d!,
but that becomes evident in Figs. 5~b! and 5~d!# is the higher
complexity in the shape of the stable branches in the ID
for t>0.3. It is associated to the arising of five or mo
homogeneous solutions to the mean-field equations in
IDR. As these aspects could be a spurious result due to
mean-field scheme, we are presently undertaking the num
cal simulation in this regime in order to confirm or reject t
features predicted by the mean-field treatment. Such res
will be published elsewhere.
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D. Energetics

Figure 6 shows the efficiency«— defined in Sec. II C 3—
as a function ofF, at pointA ~in correspondence with Fig. 2

FIG. 5. ^Ẋ& vs F characteristic~in MFA! around point B, for
t50.3. Solid lines, stable branches; dashed lines, unst
branches. ~a! Q516.0,K055.0; ~b! Q516.0,K058.0; ~c! Q
520.0,K056.0; ~d! Q519.0,K059.0.
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FIG. 6. Efficiency « as a function ofF, at point A. ~a! t
50.05; ~b! t50.1; ~c! t50.3 @solid lines, stable branches; dotte
lines, unstable branches; note the different scale of~c!#. ~d! «.0
region of the stable branches~solid line, t50.05; dashed line,t
50.1; dotted line,t50.3).
05110
where we have thickened the ranges where«.0). For the-
sake of completeness, we have also plotted« vs F at pointB
~Fig. 7, corresponding to Fig. 4!.

Before we delve in the separate analysis of each s
regime, we shall comment on some general features. As F
6 and 7 show, for each value oft there is an optimal value o
uFu yielding the maximum efficiency. Moreover, Figs. 6~d!
and 7~c! tell us that the maximum expectable efficiency is
the order of 1023.

Figures 6~a! and 6~b! derive respectively from Figs. 2~b!

and 2~c!, where thê Ẋ& vs F hysteresis cycle is normal. In
the regions where theF dominions do not overlap, the stab
branch in Fig. 2 has the sign ofF; so «,0 until F is re-
verted. Then« becomes positive attaining a maximum valu
and vanishes exactly where the jump to the other sta

FIG. 7. Efficiency« as a function ofF, at pointB. ~a! t50.2;
~b! t50.4 @solid lines, stable branches; dotted lines, unsta
branches#; ~c! «.0 region of the stable branches~solid line, t
50.2; dashed line,t50.4).
6-9
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branch~having a strongly negative efficiency! occurs. More-
over, the open or closed character of the lower branch ca

traced back to the~open or closed! character of thêẊ& vs F
characteristic, namely, to the existence of a single or mult
unstable branches.

Figure 6~c! corresponds to Fig. 2~d!, where thê Ẋ& vs F
hysteresis cycle is anomalous. A remarkable feature of
case is that it is theunstablebranch that has a positive effi
ciency of the order of 1023 @dotted line in Fig. 6~c!# whereas
the maximum positive efficiency for the stable one is of t
order of 1024 @solid line in Fig. 6~c! and dotted line in Fig.
6~d!#. Here—in the regions where theF dominions do not
overlap—the stable branch in Fig. 2 has opposite sign toF;
so «.0 ~albeit very small! until F is reverted. Then« be-
comes negative until it joins the second unstable branch,
suddenly jumps from a negative value to a~very small! posi-
tive value.

With regard to pointB, the value oft in Fig. 7~a! is
intermediate between those of Figs. 4~a! and 4~b!, and cor-
responds to a normal hysteresis cycle. The one in Fig. 7~b! is
that of the anomalous hysteresis cycle shown in Fig. 4~d!. In
both cases, the transition between stable branches doe
have an associated jump in« ~from the point of view of the
efficiency the transition is less abrupt, since it occurs
tween close negative values of«).

Although the noise strengthQ and self-correlation timet
~as well as the global couplingK0) are not control
parameters—as is the tiltF of the potential—it is nonetheles
interesting to study how the efficiency« of the mechanical
rectification process depends on them. Thus we h
plotted—for F51.0, highlighted in Figs. 2 and 4—« as a
function of t, at pointsA @Figs. 8~a! and 8~b!# andB @Figs.
8~c! and 8~d!#.

In both cases, the shape of the curve is that of a nor
hysteresis cycle. The stable branch starting att50.0
disappears—through a bifurcation resembling an inve
saddle-node one—at a finite value oft i ~0.22 for pointA and
0.88 for pointB), and has«,0 throughout. On the othe
hand, a direct bifurcation occurring at afinite valuetd ~0.01
for point A and 0.17 for pointB) gives rise to a new stabl
branch having«.0 ~at F51) for t.td . For t.t i , only
the second branch remains. These plots can be understo
recalling Figs. 2 and 4, respectively—namely, theVm[^Ẋ&
vs F plots for t, Q, andK0 fixed—in the vicinity ofF51.

In the NDR—wherein the cycle is normal—the^Ẋ& vs F
characteristic exhibits two stable branches and an unst
one, forming both inverse~for F.0) and direct~for F,0)
bifurcations. Both move towardsF50 as t decreases~the
width of the hysteresis loop diminishes!. For some value oft
the inverse bifurcation crosses theF51 line, in coincidence
with the direct one in Fig. 8 (« vs t plot!.

On the other hand—again observing Figs. 2 and 4—
anomalous-to-normal hysteresis transition occurs ast in-
creases. The bifurcations are exchanged: the inverse one
responds toF,0 and the direct one toF.0. Since these
bifurcations move towardsF50 as t increases, theF.0
one gives rise to the inverse bifurcation in Fig. 8 forF51.
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IV. CONCLUSIONS

In this paper, we have analyzed—within the MFA—th
consequences of theh i(t) in Eq. ~2! being Ornstein-
Uhlenbeck noises, with common strengthQ and self-
correlation timet. Equation~2!, together with Eqs.~1!, ~4!,
and~5! constitute the model set up in Ref.@17#, whose mean-

FIG. 8. Efficiency« as a function oft, for F51.0: ~a! at point
A; ~b! detail of ~a!; ~c! at pointB; ~d! detail of ~c!.
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field analysis fort50 was thoroughly worked out in Refs
@17,18#.

~1! Consistent with the conclusions of a similar analy
undertaken in Refs.@16# for a lattice model, we observe
reentrance in the phase diagram as a function ofK0, not
present for t50 ~increasing the coupling beyond som
value, the system getsdisorderedagain!. On the other hand
in the ~NDR! there is anorderingeffect, since the trend ast
increases is to ‘‘wash out’’ the reentrance as a function ofQ.

~2! The line below whicha single ‘‘homogeneous’’ (Sm
50) solution exists to the MFA self-consistency equatio
@Eqs. ~13! and ~14!# ~an MFA indicator of the IDR-NDR
transition! shifts toward lowerK0 values and flattens; at th
same time, its characteristic cusp shifts toward largerQ val-
ues.

~3! Color affects severely the response of the particle c
rent to the bias force. Ast increases, there appear new so
tions to the mean-field equations in the IDR, leading to
more complex~anomalous! hysteretic behavior in thêẊ& vs
F characteristic.

~4! ^Ẋ& also exhibits~anomalous or normal, depending o
:
gy

v.

v.

,

e
.

a

k

-

05110
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the case! hysteretic behavior with respect toQ, K0, or t,
provided that the range on which that parameter is var
goes through the anomalous-normal hysteresis transitio
the ^Ẋ& vs F characteristic.

~5! The efficiency« of the mechanical rectification pro
cess depends strongly on the parameters of the model,
can be maximized for certain combinations of them.
particular—givenQ, K0, anduFu—there is an optimum self-
correlation time of the flashing potentials.

~6! In the regimes analyzed in this paper, it is impossib
to have«.0 if the multiplicative noises are white. In orde
that the coupled ratchets make useful work, the s
correlation timet must overcome a certain threshold valu
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